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Some theories of conceptual development focus on the content of do-
main-specific conceptual acquisitions (e.g., Carey, 1985), while other theo-
ries emphasize domain-general processes that support the various acquisi-
tions (e.g., Halford, 1993). A few offer balanced accounts of content and
process, but in limited domains such as arithmetic (e.g., Siegler, 1996;
Siegler & .Shipley, 1995). In this chapter, I focus on a third aspect of
conceptual development by addressing the following question: In what
kind of system can conceptual development occur? This question differs
from questions about the content or process of conceptual development
because it addresses the nature of the underlying system that represents
content and executes processes.

This difference can best be understood in terms of the following analogy.
Consider the situation you find yourself in when you purchase a new piece
of software. You know that the compact disk (CD) contains all the data
and programs required to function properly, but something else is neces-
sary before the programs and data can become operational. They can work
only if you have a computer with both a minimal hardware capacity (i.e.,
disk space, random-access memory capacity, monitor specifications) and a
minimal level of operating system. If any of these constraints is not met,
you cannot use the CD. Now imagine that your CD contains a “universal
conceptual development kit.” (See Fig. 6.1.) Do you have a system that
can handle it? Analogously, given any particular theoretical statement about
the mechanisms of conceptual development, we can ask: What kind of
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FIG. 6.1. An imaginary compact disk containing a conceptual development
system,

mental architecture is necessary to support the concepts and processes
proposed by that theory?

Just as ecologists find it necessary to characterize the ecological niche
of their focal species in order to fully understand their evolution and
survival, psychologists need to ask about the nature of the system in which
conceptual development takes place. In other words, they need to ask:
“What is the conceptual habitat?”

In this chapter, I suggest that self-modifying computational models pro-
vide a means of answering this fundamental question. They do so not only
by providing detailed accounts of a variety of phenomena associated with
conceptual development, but also, and more important, by providing theo-
ries of the human cognitive architecture.

Newell (1990) defined a cognitive architecture as “the fixed (or slowly
varying) structure that forms the framework for the immediate processes
of cognitive performance and learning” (p. 12). What is the nature of this
cognitive architecture? How is it organized? What are the computational
principles and constraints under which it operates? Such questions define
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the research fronders for those formulating computational models of
thought.

Two relatively distinct approaches to computational modeling of devel-
opmental phenomena have emerged along these frontiers: production
systems and connectionist systems. Production systems have tended to focus
on symbolically based, rule-oriented, higher cognitive processes, whereas
connectionist systerns have focused on the subsymbolic (or nonsymbolic},
neurally analogous, microstructure of cognition (see T. J. Simon & Halford,
1995; Klahr & MacWhinney, 1997, for extensive descriptions and compari-
sons of these approaches}.

PIAGET’S ATTEMPTS TO CHARACTERIZE THE SYSTEM

Before describing these computational approaches, I start with a bit of
history. The effort to characterize the system in which concepts develop
is not a new endeavor: Piaget's legacy is his lifelong inquiry about the
dynamic system in which conceptual development occurs. Piaget charac-
terized this system in terms of the formalisms available to him at the time.
From logic and mathematics, he constructed 2 representational system.
From biology, he borrowed the notion of assimilation and accommodation
(cf. Case, 1997). However, Piaget's initial characterization of these proc-
esses was at a highly abstract level, and no one has yet figured out how to
translate his ideas into an unambiguous operational system.

Even Piaget was dissatisfied with his early formulation of the equilibra-
tion process, and he continually reconceptualized and refined it. Thus, as
late as 1975, he was using representations like the one in Fig. 6.2 to describe
assimilation and accommodation. Although the notation gives the appear-
ance of a more precisely conceptualized account of equilibration, the ac-
companying text makes it clear that the mechanisms it depicts remain
obscure. “Before sufficiently precise models are achieved, therefore, one
witnesses a succession of states indicating progressive equilibration. The
initial states of this progression achieve unstable forms of equilibrium only
because of lacunae, because of perturbations, and above all, because of
real or potential contradictions” (Piaget, 1985/ 1975, p. 47).

COMPUTATIONAL MODELS OF COGNITIVE
DEVELOPMENT

About 30 years ago, at the same time that U.S. psychologists began to
wrestle with Piaget's ideas, there emerged in this country what has been
called “the cognitive revolution” and with it the information-processing
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FIG. 6.2. A depiction of part of Piaget's model of assirnilation and accom-
modation, OBS $—"observables relative to the subject’s action™; OBS O—
“observables relative to objects”; COORD S—"inferential coordinations of
the subject’s actions or operations”; COORD O—"inferential coordinations
among objects.” From The Equilibration of Cognilive Structures (p. 44), by |
Piaget, 1985, Chicago: University of Chicago Press. Copyright 1985 by the
University of Chicago Press. Reprinted with permission.

approach to cognitive development (R. Brown, 1970; Klahr, 1992; H. A.
Simon, 1962). Fig. 6.3 presents a concise depiction of its essential ideas.
The most important of these is that cognitive theories can be stated as
computer programs. This idea is not only fundamentally important but
also widely misunderstood. Many people have argued that computational
modelers equate the human mind to a digital computer (A. L. Brown,
1982; Miller, 1983). As Mark Antony said of Julius Caesar’s ambition: “If
it were so, it were a grievous fault.” But it is not s0.

Perhaps the misconception can be corrected by considering an example
from another field in which computational models play a central role.
Meteorologists who run computer simulations of hurricanes do not believe
that the atmosphere works like 2 computer or that their models generate
fog, rain, snow, or sunshine. They do believe that their characterizations of
the atmosphere are so complex that only a computer can draw out their
implications. It is the equations, the models, that are supposed to work like
the atmosphere, not the computer on which the models run. They are also
aware that their current models are only that: models. As such, they fail to
capture many complexities, subtleties, and local anomalies of meteorologi-
cal processes. So too for computational models of conceptual development:
Such models assume neither that the underlying silicon bears any relation
to neural tissue nor that any single model captures all of cognition.

Another idea, and the one that is important for developmentalists, is
that children's knowledge at different states or levels can be described by
different computational models. A third idea follows from the first two: If
different states of cognitive development can be accounted for by compu-
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tational models (i.e., by performance models), then so too can the devel-
opmental process that produced those states (i.e., adaptation models).
Such programs would have the capacity to alter and extend their own
processes and structures. That is, they would be selfmodifying computa-
tional models, and the model building enterprise would have two steps.
First, build the sequence of state models and then build the transition
model.

The earliest computational models of developmental phenomena ad-
dressed states but not transitions (Baylor & Gascon, 1974; Klahr & Wallace,
1976). The plan was that the adaptive transition models could come later,
after the performance models for successive states were developed and
evaluated. This two-step approach has gradually given way to models in
which performance and adaptation occur simultaneously (indicated by 3’
in Fig. 6.3).

It is difficult to achieve an appropriate balance between performance
and adaptation. The two primary approaches to computational modeling
mentioned earlier—production systems and connectionist systems——have
tended to emphasize different aspects of this delicate balance: Production
systems tend to emphasize performance over adaptation, whereas connec-
tionist systems tend to emphasize adaptation over performance. Descrip-
tions and examples of both approaches are provided later in this chapter,
and it will become evident that there are important distinctions as well as
some fundamental commonalties.

1. Cognitive theory can be stated as a computer program

(But: mind is NOT a computer!)

Program N Program N + 1 Program N + 2

’

Performance N Performance N+1 Performance N+2

2. Distinct program for each knowledge level

3. Transition program to modify from one level to the next

3'. Performance and adaptation intermingled

FIG. 6.3 Basic assumptions in computation models of cognitive develop-
ment.
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One of the most important commonalties is the feature that distin-
guishes computational models from all other types of theoretical state-
ments: They independently execute the mental processes that they represent. That
is, rather than leaving it to readers to interpret a verbal description or a
diagram of such processes as searching a problem space, redescribing a
representation, or coordinating an inference, computational models actu-
ally do the searching, redescribing, and coordinating. This similarity, in
my mind, outweighs all the real and apparent differences between symbolic
and subsymbolic computational models. In fact, as I suggest later, the
distinctions between the two approaches are diminishing as both devote
more effort to addressing developmental issues. In the next two sections,
I briefly describe each approach.

PRODUCTION SYSTEMS

The important properties of production system architectures are listed in
Table 6.1. This list describes only curent properties, which will certainly
change as we learn more about how to build adaptive production systems
that capture important developmental phenomena. I review the basics of
production systems and then focus on some interesting issues in the field.

Declarative (“Working”) Memory

A production system consists of two primary structures: declarative memory
and production mermory. Declarative memory is used to represent objects,
features, and goals. It is usually called working memory, but it is more
accurate to call it declarative memory. It contains both long-term knowl-
edge and aspects of the immediate situation such as goals and subgoals.
An important design feature of different production-system architectures
is the way that they resolve several related questions about the dynamics
and complexity of declarative memory elements. How permanent are the
declarative memory elements? Are they erased after the task is complete,
or do they remain indefinitely? The basic problem is that the more infor-

TABLE 6.1
Current Properties of Production Systems

Declarative memory {"working memory”) represents objects, features, and goals.
Procedural knowledge is stored as if~then rules {“productions”).

Executing (“firing,” “satisfying”) a production is the fundamental unit of thought.
Adaptation takes place through the acquisition and modification of productions.
The results of computation are stored in a (temporary?} declarative memory.
Knowledge is (mostly) modular.
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mation there is in declarative memory, the more likely it is that many
productions are satisfied simultaneously. This situation complicates the
conflict resolution process.

These questions have been answered in several different ways by pro-
duction system designers. At one extreme are systems in which items do
stay around forever. At the other extreme are systems in which items are
deleted once the system moves on to the next task, Intermediate between
these two extremes are systems in which the elements vary in activation
(which in turn determines how available or easily retrieved they are). The
activation increases each time the represented facts or items are encoun-
tered and decays with time after each encounter.

Production Memory

The second basic structure consists of a set of if~then rules or productions that
represent skills or procedures for interacting with the world. In these
productions, the ifside is called the condition and the then side is called the
action. The condition side of a production is a list of entities that must appear
in declarative memory. When the conditions of a production are true of the
current state of declarative memory, then the production is said to fire or
match (or to be satisfied). The action side of a production can refer to either
behavioral actions or new declarative memory elements representing a new
piece of knowledge or a new goal. Because all productions are matched in
parallel, these systems have the power to be reactive to changes in the
environment and to consider large numbers of responses simultaneously.

How does the system decide what to do when more than one produc-
tion's conditions are satisfied? The process by which a production system
chooses among satisfied productions is called conflict resolution. These de-
cisions are viewed as an integral part of the cognitive architecture. A num-
ber of conflict resolution schemes have been used over the past 25 years.
These schemes include:

1. Recency: favoring productions whose conditions refer to declarative
memory elements that have been most recently added or changed.

9. Specificity: favoring productions with many conditions (i.e., more spe-
cific productions) over productions with few conditions.

3. Importance: setting a rank ordering among productions according to
a predetermined scheme.

4. Frequency: giving preference to productions that have been used most
often and most successfully. In this way, production order can be
adapted to different experience. (I return to this issue later when I
discuss learning in production systems.)
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A more radical approach to deciding which production to fire is to just
“do it,” to fire all the satisfied productions. In one such scheme, the pro-
ductions make suggestions only about what to do (applying knowledge
from past experiences), and then another conflict resolution scheme must
decide among these suggestions (Newell, 1990). In another scheme, all
productions fire, but they must compete for a limited pool of activation
resources (Just & Carpenter, 1992). The full implications of these different
schemes are still being determined. This problem is one of the research
frontiers in the production system world.

Self-Modification in Production Systems

How can a production system adapt, learn, and develop? At present, there
are two primary mechanisms for self-modification: One set of mechanisms
creates new productions, and the other modifies or tunes existing produc-
tions.

Creating New Productions. One way in which new productions can be
created is via compilation, in which a new production is produced; this
production does, in one step, the action of several productions. An im-
portant variant of compilation is the chunking algorithm used in the Soar
production system (Newell, 1990). The chunking algorithm determines
which pieces of declarative knowledge were used by a recently successful
sequence of productions and then creates a new production that looks for
these declarative memory elements and directly produces the desired con-
clusion without going through the intermediate steps. This mechanism is
used by T. J. Simon and Klahr (1995) to account for children's learning
in one of Rochel Gelman's conservation training studies (Gelman, 1982).

Another mechanism is analogy. This mechanism, used in Anderson’s
(1993) ACT-R production system, converts examples in declarative memory
into productions. When no production works in the current context, the
system tries to make an analogy between the current goal and the corre-
sponding goal in an example and creates productions that achieve the
current goal by using steps analogous to the ones used to achieve the
source goal.

Modifying Existing Productions. Other production-learning mechanisms
create productions by combining or mutating existing productions. For ex-
ample, adding or deleting conditions to a production thereby makes it
more or less situation specific. Classifiers are a special case of this process
(Holland, 1975). They consist of a set of rules for classifying instances into
different categories. New rules are created by randomly mutating some
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conditions of existing rules. The rules that do a good job of classifying the
instances are kept, whereas new rules that do a poor job are discarded.

In many domains, performance improves gradually, not abruptly. How
might a production system achieve this gradualism if learning new pro-
ductions creates discrete jumps in performance? One way to do this is to
formulate productions at a very fine-grained level of detail such that many
productions are required to produce each external action. In such a
scheme, the addition of each production produces only a minor improve-
ment in performance. Another solution is to associate with each production
parameters that cause productions to perform slowly, suboptimally, or in-
frequently when they are first created and then gradually to become faster,
more efficient, or more frequent. Productions can be strengthened ac-
cording to their record of successful and unsuccessful use. Production
strength can then determine the likelihood that the production is selected
during the conflict resolution phase.

Other SelfModification Mechanisms? One of the fundamental research
questions in this area is just how many of the major phenomena of cognitive
development can be explained by the self-modification processes described
thus far. For example, it is not yet clear whether basic production modi-
fication processes such as generalization, discrimination, composition, pro-
ceduralization, and chunking can account for the apparent reorganization
necessary to get from novice to expert level (Hunter, 1968; Larkin, 1981;
Lewis, 1978; D. P. Simon & Simon, 1978). Such reorganization may involve
much more than refinements in the productions governing when subop-
erations are performed. These refinements could be produced by gener-
alization and discrimination mechanisms, but producing a new procedure
requires the introduction of new operators that, in turn, may require the
introduction of novel elements or goals—something that generalization,
discrimination, composition, and chunking are not clearly able to do.

Some additional mechanisms and processes have been suggested, but
they remain to be implemented in computational models. For example,
Wallace, Klahr, and Bluff (1987) proposed a production system architec-
ture that included a hierarchically organized set of nodes, each of which
is a semiautonomous production system, communicating via a shared work-
ing memory. Each of these nodes can be simultaneously activated. The
basic developmental process involves the construction of new nodes by
processing a representation of episodic sequences for the system’s previous
behavior (the time line). Another example of a plausible concept that
remains to be computationally implemented is Karmiloff-Smith’s (1992)
“representational redescription”—a process in which the underlying engine
of cognitive development involves increasingly efficient reorganizations of
knowledge structures and the processes that operate on them. Spensiey
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(1995) has proposed an interesting integration and extension of both
Wallace et al.’s and Karmiloff-Smith's proposals.

Such soft-core notions present challenges to the hard-core approach’
described in this chapter: Either implement these ideas or show that they
are theoretically unnecessary or create a computational alternative that
accomplishes the same thing.

Knowledge Is (Mosily) Modular

How does knowledge interact, and how does learning generalize? Produc-
tion systems provide strong answers to these fundamental questions: Learn-
ing occurs at the unit of productions; transfer from one situation to another
occurs to the extent that the same productions are applicable in both
situations.

Because of their modularity, production systems scale up well to complex
tasks. That is, production systems function well not only on small, simple
tasks but also in realistic environments involving many subtasks and tens
of thousands of knowledge elements. This modularity is not perfect, and
some productions may not be entirely independent of all other produc-
tions. This situation can be particularly troublesome in adaptive production
systems because new productions can interfere with the previously smooth
functioning of an earlier series of productions. This problem is one of the
most difficult aspects of building production system models.

CONNECTIONIST SYSTEMS—A BRIEF OVERVIEW

All connectionist models share a set of assumptions about the nature of
neural computation: its connectivity, its representation of knowledge, and
the rules that govern learning.? Connectionist systems use neither symbols
nor rules to represent knowledge. The only sense in which they embody
a cognitive architecture is their strong commitment to distributed know}-
edge and a lJoose commitment to the notion that the models are connected
somewhat analogous to the way that the brain is wired.

Connectionist systems consist of elementary nodes or units, each of
which has some degree of activation. Nodes are connected to each other
in such a way that active units can either excite or inhibit other units.
Connectionist networks are dynamic systems that propagate activation
among units until a stable state is reached. Information or knowledge is

1See Klahr (1992) for a discussion of the distinction between hard-core and sofi-core
information-processing approaches in developmental psychology.
*This section is adapted from Klahr and MacWhinney (1997).



6. THE CONCEPTUAL HABITAT 141

represented in the system not by any particular unit, but rather by the
pattern of activation over a large set of units, any one of which may participate
to some degree in representing any particular piece of knowledge. McClel-
land (1995) succinctly characterized the essence of these models:

On this approach—also sometimes called the paraliel-distributed processing
or PDP approach—information processing takes place through the interac-
tions of large numbers of simple, neuron-like processing units, arranged
into modules. An active representation—such as the representation one may
have of a current perceptual situation, for example, or of an appropriate
overt response—is a distributed pattern of activation, over several modules,
representing different aspects of the event or experience, perhaps at many
levels of description. Processing in such systems occurs through the propa-
gation of activation among the units, through weighted excitatory and in-
hibitory connections.

As already suggested, the knowledge in 2 connectionist system is stored
in the connection weights: it is they that determine what representations we
form when we perceive the world and what responses these representations
will lead us to execute. Such knowledge has several essential characteristics:
First it is inchoate, implicit, completely opaque to verbal description. Second,
even in its implicit form it is not necessarily accessible to all tasks; rather it
can be used only when the units it connects are actively involved in per-
forming the task. Third, it can approximate symbolic knowledge arbitrarily
closely, but it may not; it admits of states that are cumbersome at best to
describe by rules; and fourth, its acquisition can proceed gradually, through
a simple, experience-driven process. (p. 158)

Because connectionist systems are inherently learning systems, the two-
step approach to modeling conceptual development described earlier (first
performance models, then transition models) has not been used. Instead,
designers of connectionist models have focused on models that learn con-
tinuously, and they have attempted to illustrate that different distributions
of connectivity among the nodes of their networks correspond to different
knowledge levels in children. The earliest applications were in the area of
language acquisition (e.g., Rumelhart & McClelland, 1986), but more re-
cent models—some of which I describe next—have begun to examine
conceptual development and problem solving.

Basic Principles of Neural Networks

Connectionist models are implemented in terms of artificial neural net-
works. Neural networks that are able to learn from input are known as
adaptive neural networks. Such networks can be specified in terms of eight
design features:
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1. Units. The basic components of the network are a number of simple
elements called variously neurons, units, cells, or nodes. In Fig. 6.4, the
units are labeled with letters such as x1.

9, Conmnections. Units or pools of units are connected by a set of pathways
variously called connections, links, pathways, or arcs. In most models, these
connections are unidirectional and go from a sending unit to a receiving
unit. This unidirectionality assumption corresponds to the fact that neural
connections also operate in only one direction. The only information
conveyed across connections is activation information. No signals or codes
are passed. In Fig. 6.4, the connection between units x1 and y1 is marked
with a thick line.

3. Patierns of connectivity. Units are typically grouped into pools or layers.
Connections can operate in or between layers. In some models (such as
the one shown in Fig. 6.4), there are no in-layer connections; in others,
all units in a given layer are interconnected. Units or layers can be further
divided into three classes:

FIG. 6.4. The basic components of a connectionist model (see text for
explanation).
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Input units, which represent signals from earlier networks. These units
are marked x in Fig. 6.4.

Outpul uniis, which represent the choices or decisions made by the
network. These units are marked z in Fig. 6.4.

Hidden units, which represent additional units juxtaposed between input
and output for the purposes of computing more complex, nonlinear
relations. These units are marked y in Fig. 6.4.

4. Weights. Each connection has a numerical weight that is designed to
represent the degree to which it can convey activation from the sending
unit to the receiving unit. Learning is achieved by changing the weights
on connections. For example, the weight on the connection between x1
and yl is given as .54 in Fig. 6.4.

5. Net inputs. The total amount of input from a sending unit to a re-
ceiving unit is determined by multiplying the weights on each connection
to the receiving unit by the activation of the sending unit. This net input
to the receiving unit is the sum of all such inputs from sending units. In
Fig. 6.4, the net input to yl is .76, if we assume that the activations of x1
and x2 are both 1 and the x1y1 weight is .54 and the x2yl weight is .22.

6. Activation functions. Each unit has a level of activation. These activa-
tion levels can vary continuously between 0 and 1. To determine a new
activation level, activation functions are applied to the net input. Functions
that “squash” high values can be used to make sure that all new activations
stay in the range of 0 to 1.

4. Thresholds and biases. Although activations can take on any value be-
tween 0 and 1, often thresholds and bias functions are used to force units
to be either fully on or fully off.

8. A learning rule. The basic goal of training is to bring the neural net into
a state in which it can take a given input and produce the correct output
To do this, a learning rule is used to change the weights on the connections.

The most common approach—called back propagation—is to present the
network with an input pattern and to compare the output pattern it pro-
duces with the one that is desired (ie., the thing to be learned). The
system then computes the difference between these two and adjusts the
weights so as to approach the desired pattern in an optimal way. The basic
idea is to adjust each parameter in the network in proportion to the effect
that the adjustment has on the overall fit to the desired output. Once the
adjustments are made, another comparison is done, and the system reit-
erates this process for many cycles.

Another approachmcalled cascade correlation—has been used by Shultz,
Schmidt, Buckingham, and Mareschal (1995) to model several develop-
mental domains, including causal reasoning, seriation, integration of dis-
tance, time, and velocity, and personal pronouns. Cascade correlation mod-
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cls start with a network that has no hidden units. Such units are added-——as
part of the training-learning process—when the system decides that its
rate of learning has reached a plateau.

All connectionist networks share this common language of units, con-
nections, weights, and learning rules, but models differ markedly both in
their detailed patterns of connectivity and in the specific rules used for
activation and learning.?

TWO COMPUTATIONAL APPROACHES TO THE SAME
DOMAIN: THE BALANCE SCALE

In general, the domains in which production system models and
connectionist models have been proposed have been nonoverlapping.
Production systems have been used mainly to model higher order
problem-solving domains, whereas connectionist models have tended to
focus on perceptual and language development. In one domain, familiar
to all developmentalists, howcver, both types of models have been
formulated: Piaget's balance scale prediction task.

Production Systems for the Balance Scale

Siegler (1978, 1976) proposed an elegant analysis of rule sequences
characterizing how children (from 3 years to 17 years old) make predictions
on this task (as well as in several other domains having a similar formal
structure). This work has provided the basis for many subsequent empirical
and theoretical analyses, including computational theories cast as both
production systems and connectionist networks.

The basic physical concept that underlies the operation of the balance
scale is torque: The scale rotates in the direction of the greater of the wo
torques acting on its arms. Because the pegs are at equal intervals from
the fulcrum and the weights are all equal, a simple torque calculation is
possible. It is the sum of the products of the number of weights on a peg
times the ordinal position of the peg from the fulcrum. This calculation
is done for each side, and the side with the greater sum of products is the
side that goes down. (If they are equal, the scale balances.)

Siegler (1976) demonstrated that children’s different levels of knowl-
edge about this task can be represented in the form of a sequence of four
increasingly mature rules or models. A child using Model I considers only

"For excellent, readable introductions to the theory and practice of neural network
modeling, readers may wish to consult Bechtel and Abrahamsen {1991) or Fausett {1994).
For a mathematically advanced treatment, see Hertz, Krogh, and Palmer {1891).
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the number of weights on each side; If they are the same, the child predicts
balance; otherwise he or she predicts that the side with the greater weight
will go down. For a child using Model I, a difference in weight still domi-
nates, but if weight is equal, then a difference in distance is sought. If it
exists, the greater distance determines which side goes down; otherwise
the prediction is balance.

A child using Model III tests both weight and distance in all cases. If both
are equal, the child predicts balance; if only one is equal, then the other one
determines the outcome; if they are both unequal but on the same side with
respect to their inequality, then that side is predicted to go down. In a
situation in which one side has greater weight and the other has greater
distance, the child, although recognizing the conflict, does not have a
consistent way to resolve it but simply muddles through by making a random
prediction.

A child using Model IV represents mature knowledge of the task: Be-
cause it includes the sum-of-products calculation, children using it always
make the correct prediction, but if they can base their prediction on
simpler tests, they do so. The components of this knowledge are acquired
over a remarkably long span of experience and education. Although chil-
dren as young as 5 years old usually know that balances such as teeter-totters
tend to fall toward the side with more weight, most college students are
unable to solve balance scale problems consistently.

Siegler represented these different levels of knowledge in the form of
binary decision trees that could make clear predictions about the responses
made by a child using one of these rules for any specific configuration of
weights. Such decision trees are silent on the dynamics of the decision
process, however, and theydonot make a clear distinction between encoding
processes and decision processes. By recasting the rules as production systems,
Kiahr and Siegler (1978) were able to make a more precise characterization
of what develops than was afforded by the decision-tree representation.

Their production system is listed in Table 6.2. For example, Model II
in Table 6.2 is a production system consisting of three productions. The
condition elements in this system are all tests for sameness or difference
in weight or distance. The actions all refer to behavioral responses. None
of the models in Table 6.2 contains a representation for any finer grain
knowledge, such as the actual amount of weight or distance or the means
used to encode that information. There is no explicit representation of
how the system produces the final verbal output. It is simply assumed that
the system has processes OI Operators that produce encoded repre-
sentations of the relational information stated in the conditions.

On any recognize-act cycle, only one of these productions fires, depend-
ing on the type of knowledge that the encoding processes have placed in
working memory. If the weights are unequal, then P2 fires; if the weights
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TABLE 6.2
Production System Representations for Balance Scale Models I-IV
Model I P1: [(Same W) —> (Say “Balance”)]
P2: {[(Side X more W) — {Say “X down")]
Maodel 11 P1: [(Same W) — (Say "Balance”}]

P2: [{Side X more W) — (Say "X down"}]
P3: [{(Same W) (Side X more D) — {Say “X down"}]

Model 1 P1: [(Same W) — (Say “Balance”)]
P2: [(Side X more W) — (Say “X down"}]}
P3: {(Same W) (Side X more D) — (Say "X down"}]
P4: [(Side X more W) (Side X less D) —» muddie through]
P5: [(Side X more W) {Side X more D} - (Say "X down"}}

Model IV P1: [(Same W) — (Say "Balance”}]
P2: [(Side X more W) — (Say “X down")]
P3: [(Same W) (Side X more D) — (Say "X down"}}
P4 [(Side X more W) (Side X less D) - {get torque) ]
P5: [(Side X more W) (Side X more D) — (Say "X down™} ]
P6: [(Same torque) — (Say “Balance™)]
P7: [(Side X more torque) — (Say “X down")]

Transitional Requirements

Transitions Production Modifications New Operators

=1 Add P3 Add distance encoding and comparison.
Il - I Add P4, P5 None.

I — IV Modify P4; add P6, P7 Add torque computation and comparison.

Nore D = Distance; W = Weight

are equal and the distances are not, then both Pl and P3 are satisfied,
and this conflict must be resolved by the production system architecture.
For the production system that Klahr and Siegler proposed, the conflict
is resolved by a specificity principle that always selects the more specific
of two productions when one is a special case of the other. Finally, if both
weights and distances are equal, then only P1 is satisfied, and it fires. The
task facing a transition model is indicated at the bottom of Table 6.2. At
the level of productions, the requisite modifications are straightforward:
Transition from Model I to Model II requires the addition of P3; from
Model II to Iil, the addition of P4 and P5; and from model III to IV, the
addition of P6 and P7 and the modification of P4 to P4’

Thus far I have compared the models at the level of productions, but
productions need information provided by the operators that encode the
external configuration. Consequently, it is informative to compare the four
models at a finer level of analysis by looking at the implicit requirements
for encoding and comparing the important qualities in the environment.
The production system for Model I tests for sameness or difference in
weight. It requires an encoding process that either directly encodes relative
weight or encodes an absolute amount of each and then inputs these
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representations into a comparison process. Whatever the form of the com-
parison process, it must be able to produce not only a same-or-different
symbol, but if there is a difference, it must be able to keep track of which
side is greater. The production system for Model II requires the additional
capacity to make these decisions about distance as well as weight. This
might constitute a completely separate encoding and comparison system
for distance representations, or it might be the same system except for
the interface with the environment.

Model HI's production system needs no additional operators at this
level, and it differs from Model 11 only in the way it utilizes information
that is already accessible to Model II. The Model IV production system
requires a much more powerful set of quantitative operators than does
any of the preceding models. To determine relative torque, it must first
determine the absolute torque on each side of the scale, and this calculation
requires exact numerical representation of weight and distance. In addi-
tion, the torque computation requires access to the necessary arithmetic
production systems to actually do the sum of products calculations.

Although I have compared the four models at two distinct levels-—pro-
ductions and operators—the levels are not that easily separated. Missing
from these models is a set of productions that indicates the interdepend-
ence: productions that explicitly determine which encoding the system
makes. In these models, there are almost no productions of the form:
(want to compare weights) — (attend to stimulus and notice weight). The
sole exception to this occurs in P4’ in Model IV. When this model is
confronted with a nonconflict problem, either P1, P2, P3, or Pb fires on
the first recognize cycle. For a conflict problem, P4’ fires, and the system
attempts to “get torques.” The result of this unmodeled action, as described
previously, produces a knowledge element that could satisfy either P6 or
P7 on the next cycle.

Representing the Immediate Task Context. One advantage of a production
system formulation is that it facilitates the extension of a basic model of
the logical properties of a task to include the processing of verbal instruc-
tions, encoding of the stimulus, keeping track of where the child is in the
overall task, and so on. For example, in their analysis of individual subject
protocols on the balance scale, Klahr and Siegler proposed several distinct
models to account for some children’s idiosyncratic but consistent response
patterns. Some of these models included not only the basic productions
for a variant of one of Siegler’s four models for balance scale predictions,
but also knowledge about the instantaneous task context

These models are too detailed to present here, but it is instructive to
consider the way in which such detailed models could characterize how
much more than balance scale knowledge, as such, is required by a child
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performing this task. For example, one of Klahr and Siegler’s subjects
tended to encode both weight and distances as either big or small. Their
model for that subject dealt with the way in which the child maintained
declarative memory elements representing the following pieces of infor-
mation: Which side has more weight or distance, which side has a bigweight
or distance, what the current criterion value is (for big weights or dis-
tances), what the scale is expected to do, what the scale actually did,
whether the prediction is yet to be made or has been made, and whether
it is correct or incorrect.

Thus, their model makes a strong claim about how much encoded
knowledge must be available at any one moment and hence about the
dynamics of declarative memory mentioned earlier. Although production
system models do not generally impose any clear constraints on the size of
working memory, they provide the potential for such an analysis. One of the
relatively unexplored areas for future computational modelers is to attempt
to integrate the theoretical constructs and empirical results described by
working memory capacity theorists, such as Case (1986) and Bidell and
Fischer (1994), with the added formalisms and precision of production
system models. Promising steps in this direction are represented by work by
Halford and his colleagues (Halford, 1993; Halford et al.,, 1995).

The balance scale production systems exemplify the sequence-of-stages
approach used in the early days of production system modeling. The primary
goal was to explore the nature of the system that could display the different
levels of performance observed in children's responses to these tasks.
Although, as noted earlier, adaptive production systems exist in other
domains, as yet there is no such adaptive production system for the balance
scale domain. This area is one of the few involved in higher order conceptual
development in which connectionist models have been constructed. I turn
to these next.

Connectionist Models for the Balance Scale

McClelland (1989, 1995) noted that, although the production system models
for the balance scale provided a good description of the four rules discussed
earlier, they tell us little about the forces that drive children from one rule
system to the next. In addition, none of the existing rule-based models can
account for the torque-difference effect; thus children do better when the
discrepancy between the torques on each side of the balance scale is
increased (Ferretti & Butterfield, 1986; Wilkening & Anderson, 1982).
McClelland constructed a back propagation model of the balance beam
problem with 20 input units. One positional unit was devoted to each of the
10 pegs (5 to the left and b to the right of the fulcrum). Ten weight units
represented the numbers of weights stacked up ata position, with 5 units for
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the possible number of weights on the left and 5 units for the possible weights
on the right. Every possible problem could be encoded with only 4 units
turned on. For example, in a problem with 4 weights on the third peg from
the right and 5 weights on the second peg from left, the units turned on
would then be 4-right-weight, 5-left-weight, 3-right-distance, and 2-left-dis-
tance. To capture the common assumption that children have more expo-
sure to weight as a cause of going-down effects, McClelland biased the
network toward reliance on the weight cue over the distance cue by including
alarge number of cases in which the distance cue was neutralized. (This kind
of hand-wired bias is justifiably used to put the model in the same initial state
as the children studied in Siegler’s original studies. It makes no attempt to
account for how children reach this initial state.)

Using this type of representation, McClelland was able to model many
aspects of the learning of this task. The network began with performance
that relied on Model I and moved on to learn Model IT and then Model III.
It never acquired full use of Model IV, because, McClelland argued, some
aspects of the use of Model IV by adults involved the application of full
mathematical analysis. The network was, however, able to capture aspects of
the torque distance effect mentioned previously. Torque distance effects
indicate that subjects did notsimply apply an all-or-none rule, but performed
a cue weighting that is much like that conducted inside a neural network.

Shultz et al. (1995) extended McClelland’s model by using the cascade
correlation procedure described earlier. Shultz et al. argued that static back
propagation networks with onlya few hidden units can succeed at modeling
the first stages of development but are unable to reach higher levels of
performance, because their weights become too closely tuned to solving the
basic levels of the problem. This was true for McClelland's balance beamn
model, which learned Models I, I, and aspects of IT], but was unable to learn
Model IV. Using the cascade correlation framework, however, Shultz et al.
were able to model successful learning of all four rules.

These models make two important points. First, both the McClelland and
the Shultz et al. models showed that connectionist models can provide good
accounts of perceptual aspects of learning such as the torque distance effect.
Second, as Mareschal and Shultz (1996) pointed out, cascade correlation
models are inherently generative and thus provide a strong existence proof
for the plausibility of a constructivist approach to cognitive development.

COMPUTATIONAL MODELS OF OTHER
DEVELOPMENTAL PHENOMENA

1 have focused on the balance scale in order to compare the two approaches
to computational modeling, but many other computational models now
address a variety of other domains and the issue of relevance to cognitive
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development. The domains include classic Piagetian tasks (conservation,
seriation, object permanence) as well as arithmetic and language acquisi-
tion. The developmental issues include rule learning, stages, strategy
change, generalization, and efficiency (see Table 6.3). Of particular interest
is Shultz’s (1997) recent cascade correlation model of number conserva-
tion, which captures an impressive array of conservation phenomena and
proposes a novel explanation for some of them.

CONCLUSION

In concluding, I want to make three points. First, the two computational
approaches are not as distinct as their practitioners have often claimed
(MacWhinney, 1993, makes a similar point). Second, for all of their ac-
complishments, both approaches must solve some very difficult remaining
problems, but these problems are fairly well defined, so that progress (or
failure) can be measured. Third, I suggest how to relate these new ideas

to earlier Plagetian notons.

TABLE 6.3

Recent Computational Models of Developmental Relevance

Moddel Type

DNomain Issues Addressed Authors
Connectionist
Seriation Rule learning, stages, perceptual effects  Shuliz et al. {1995)

Distance, tume
Causal reasoning
Pronoun acquisition
Language acquisition
Object permanence
Number conservation
Production System
Transitivity

Number conservation

Arithmetic

Concept learning
and language
acquisition

Learning gender of definite articles in
German

Graded representations of knowledge
and strategies

Problem size effect, length bias effect,
screening effect

Strategy change, capacity, complexity

Analogical reasoning in skill
acquisition

Durability and robustness of learning,
generalization, operational level and
structural change, speed of learning

Development of increasingly efficient
procedures for single-digit addition

First language acquisition

MacWhinney et al. (1989)

Munakata, McClelland,
Johnson, & Siegler (1997)
Shultz (1997)

Halford et al. {1995)

T.} Simon & Klahr (1995)

Neches (1987)

Langley (1987)
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Comparing Production Systems and Connectionist Systems

What are the fundamental differences between production system and
connectionist approaches? Here are some candidates:

1. Parallelism. The inherent parallelism of connectionist models is often
contrasted with the serial recognize-act cycle of production systems. Pro-
duction systems, however, also have a high degree of parallelism because
during the maich or recognize phase of a production system’s recognize-act
cycle, the condition side of all productions is matched in parallel with all
the active declarative memory elements.

9. Distributed knowledge. The extent to which knowledge is distributed
or modularized in a production system depends entirely on the grain size
that elements or productions are supposed to capture. A single production
might represent a very explicit and verbalizable rule; it might represent a
small piece of processing for a complex, implicit piece of knowledge; or
it might represent a complex pattern of cue associations much like those
found in connectionist models. Similarly, in parallel distributed processing
(PDP) models, the individual element can represent knowledge at any
grain size from an individual neuron to an assembly of neurons to the
word neuron. Nothing inherent in either formulation specifies what this
grain should be until additional constraints are imposed on the model.

3. Continuily. Another purported difference between PDP models and
production system models is the gradualism of the former and the abruptness
of the latter. We can, however, create a production system architecture
with continuously varying strengths of productions. Hence production sys-
tems can exhibit gradualism. Because of the appropriate grain size on a
performance window, connectionist models could appear to be undergoing
discontinuous changes.

Of course, there are important pragmatic and theoretical differences
here,* but I believe that the internecine battle between the symbolic and
subsymbolic camps has overstated the differences and ignored the fact that
the two approaches share many important properties. Indeed, it should
not be surprising that there are many points of convergence, because both
approaches pursue common goals and face a common constraint: the real
behavior of real children. As I noted earlier, perhaps the most important

“Perhaps the difference in these approaches is in the rhetoric. Although production system
descriptions are burdened with a pedestrian terminology of “matching,” “recognizing,”
“acting,” “conflict resolution,” and “chunking,” connectionist models enjoy the lyrical
characterizations of such things as “cascade correlation,” “graceful degradation,” “optimal

harmony,” "victery," and “epochs.” It's hard to beat that!



152 KLAHR

common feature is the conviction that computational models provide a
very precise language in which to describe the conceptual habitat.

Problems to Be Solved

The area of unsolved problems is exciting, productive, and cumulative
because the discipline of creating computational models forces our igno-
rance to the forefront. The unresolved questions are sufficiently specific
that it is possible to assess theoretical progress (see Mareschal & Shultz,
1996, for a cogent example). A recent compendium of computational
models of cognitive development (T. J. Simon & Halford, 1995) contains
several illuminating disagreements among people who have modeled the
same domain, but from different approaches.

It is clear that the ultimate understanding of transition mechanisms
requires insights from both connectionist and production system perspec-
tives. Claims for the superiority of one approach over the other are pre-
mature, and both approaches still face some difficult challenges. Here are
a few of the issues on the research frontier for computational models of
conceptual development.

Scalability. To date, both symbolic and subsymbolic models of cognitive
development have focused on highly circumscribed domains, and in those
domains, on smallscale exemplars of the domain. For all the work on
connectionist models of language, no one has yet been able to construct
a complete connectionist model of language acquisition. For example,
developmental neural networks are often constrained to well-defined topics
such as the acquisition of the English past tense (Cottrell & Plunkett, 1991)
or learning German gender (MacWhinney, Leinbach, Taraban, & McDon-
ald, 1989). The toy model approach often reduces large problems such as
question answering (St John, 1992) or word sense disambiguation (Harris,
1994) to small problems by using only a few dozen sentences or words in
the input corpus. In fact, there is not even a reasonably complete account
for smaller skill domains such as word learning or syntactic deveiopment.
For all the work on Piagetian and other types of problem solving, no one
has constructed a production system or a neural net that performs the full
range of tasks encountered by a normal 5-year-old child. In essence, all
the work so far has been on toy versions of larger domains.

Computational modelers have argued, either explicitly or implicitly, that
in principle, such models can be expanded substantially with no major
theoretical modifications. But can they? The plausibility of these claims
varies according to the approach, and the symbolic models have the better
track record. Although there are no large-scale developmental production
systems, there do exist several very large production systems that start with
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a few hundred initial hand-coded productions and go on to learn over
100,000 productions. Domains include both artificial-intelligence-type
tasks and cognitive models (see Doorenbos, 1995, for a review and evalu-
ation of several such large-scale production systems).

With respect to scaling up connectionist systems, there are grounds for
skepticism. For example, in the language-learning domain, when one at-
tempts to add additional words or sentences to many connectionist lan-
guage models, their performance begins to degenerate. One of the major
challenges for computational modelers, then, is a direct attack on this
scalability problem.

Ad Hoc Assumptions About the Environment. Another problem facing both
connectionist and production system models is the lack of a principled,
data-constrained theory of the effective environment in which such models
operate. For many models, the training to which they are exposed is based
on arbitrary, unprincipled, ecologically ungrounded assumptions about
the environmental inputs that children receive. Until we have better ways
of measuring the actual properties of patterns in the effective environment,
we cannot really claim that our models are being properly constrained by
real empirical data.

Fortunately, there are two promising research avenues that may soon
begin to alleviate this problem. The first avenue is the development of rich
computerized databases. In the area of language development, the Child
Language Data Exchange System (CHILDES) database (MacWhinney,
1995) has collected transcript data from dozens of major empirical projects.
These transcripts document both the langnage input to children and
children’s developing conversational competence. These data are now being
supplemented by digitized audio and video records that give researchers
access to the full richness of the original interactions. Because this database
is computerized according to a standardized format, it is possible to use a
wide variety of computer programs for search and analysis of patternsin both
the input and children's productions. Increasingly, simulations of language
learning are being based on properties of input as computed from the
CHILDES database and similar computerized sources.

A second promising development is the growth of microgenetic studies.
This research is designed to capture developmental processes as they occur
by looking at fine-grained moment-to-moment changes in cognition and
behavior. Kuhn (1995) has applied microgenetic techniques to the study
of scientific reasoning, and Siegler and Crowley (1991) and Alibali (1993)
have applied this methodology to the study of strategy development in
mathematics. The technique can be used equally well with basic behaviors
such as walking (Adolph, 1995) or reaching (Thelen & Smith, 1994).
Because microgenetic methods have such a fine-grained level of analysis,
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they collect quantities of data that are rich enough to support interesting
tests of connectionist (MacWhinney & Leinbach, 1991), symbolic (Marcus
et al., 1992}, and dynamic systems (van der Maas & Molenaar, 1992) ap-
proaches to cognitive development.

Cabbages and Kings

Finally, I want to move to 2 metatheoretical issue, which concerns the way
in which workers in our field have viewed theoretical progress. In particular,
how are the questions addressed here related to Piaget’s efforts to char-
acterize the developmental process?

The message | have attempted to convey is twofold: Questions about the
conceptual habitat can be answered in terms of computational models, and
an active field of research in cognitive science is exploring the capacity and
limits of different cognitive architectures. The field is lively, somewhat
contentious, and highly technical. 1 have tried to indicate its current
contributions and its potential for our area, as well as some of its knottiest
problems. I am concerned, however, that, as psychologists interested in
cognitive development, we have been unnecessarily burdened by the shadow
of the massive theoretical edifices of the past. The problem, as depicted in
Fig. 6.5, is that the earlier constructs of assimilation and accommodation may
impose an unnecessary and potentially unproductive constraint on both new
empirical work and new theoretical concepts. Indeed, developmentalists of
all stripes—including computational modelers—seem to feel obliged 1o
comment on the extent to which their theories can be placed in correspon-
dence with the Piagetian notions of assimilation and accommodation. For
example, consider the mapping by Shultz et al. (1995):

Using Piaget’s terms, one can conceptualize three general types of cognitive
encourters in cascade-correlation nets: (1) assimilation, (2) assimilative
learning, and (3) accommodation. Pure assimilation occurs without learning.
It is represented in cascade-correlation by correct generalization to novel
problems without either weight changes or hidden unit recruitment. Assimi-
lative learning occurs by weight adjustment, but without hidden unit recruit-
ment. Here the network learns new patterns that do not require non-linear
changes in representational power. Accommodation occurs via hidden unit
recruitment when new patterns cannot be learned without non-linear in-
creases in computational power. (p. 53)

Shultz et al. go on to discuss other types of computational models in
relation to the processes of assimilation and accommodation:

Adaptation through assimilation and accommodation can also be re-inter-
preted through rule-based and back-propagation perspectives, but with less
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FIG. 6.5. Current neo-Piagetian paradigm.

satisfactory results. In a rule-based learning system like Soar, assimilation
could be construed as rulefiring and accommodation could be construed
as chunking new rules through impasse-driven search. In back-propagation
learning, accommodation could be viewed in terms of weight adjustment
and assimilation as the absence of such adjustment. (p. 54)

These attempts to map the new computational constructs to precom-
putational theoretical constructs have been widespread among connection-
ists. The following from Bechtel and Abrahamsen’s (1991) introductory
text on the topic illustrates the genre:

Connectionism could be viewed as a modern mechanism for achieving stage-
like states by means of the heretofore somewhat mysterious processes of
accommodation and assimilation. Specifically, assimilation can be inter-
preted in terms of the tendency of an interactive network to settle into the
most appropriate of its stable (attractor) states . .. when input is presented
to it; in Piaget's language, this is the schema to which the experience has
been assimilated. Accommodation can be interpreted as the changes in
activations as well as weights that occur in order to assimilate the experience.
(That is, transient state changes and learning are highly interrelated both
in connectionist networks and in Piaget's notion of accommedation. The
assimilation of any experience involves both of these aspects of accommo-
dation.) (p. 271)

The proclivity to look over one’s theoretical shoulder for evidence of
“equilibratory correctness” is not limited to computational modelers. For
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example, in summarizing the current state of theory-theory, Gopnik (1996)
made the mapping as follows: “Thus, the interpretive effects of theories
seem much like assimilation, and the processes of falsification and counter
evidence, which lead to theory change, are reminiscent of accommodation”
(p- 221).

It strikes me that the search for assimilation and accommedation in
modern computational theories of development represents a curiously non-
Piagetian approach to conceptual development. Let me make the point
by starting with a quotation from Piaget, who put it this way: “A rabbit
that eats a cabbage doesn’t become a cabbage; it's a cabbage that becomes
rabbit—that’s assimilation” (Piaget, quoted in Bringuier, 1980, p. 42). Let
me make an analogy to this rabbit~cabbage relation. In this analogy, the
cabbage is Piaget's theory of equilibration, and the rabbit—the entity doing
the assimilation and accommodation—is us: the collective understanding
of our field about the nature of cognitive development.

If our field's conceptual development followed the Piagetian model,
then, as the rabbit did to the cabbage, we would assimilate and accommo-
date his theory. The field would, at first, accommodate its earlier theoretical
constructs such that it could come to grips with new ideas. Simultaneously,
the assimilation process would exercise its function, and the theoretical
insights would be dissolved, decomposed, extracted, and intermingled with
our existing conceptual structures. Moreover, new data, new questions,
and new theoretical languages would, in their turn, be assimilated and
accommodated into the conceptual structure of the field. In other words,
we rabbits would digest this theoretical cabbage, would eat other cabbages
and other vegetables, but would remain rabbits.

But I think something else has happened, at least in part of our field.
The accommodation process is all that ever got started. To take apart the
theory, to extract its essential nutrients, and pass on the rest is sometimes
viewed as a misguided mixture of heresy and ignorance. But such a view,
however, minimizes assimilation, and if there is no assimilation, then in-
stead of the cabbage becoming a rabbit, the rabbit becomes a cabbage.

However, this is quite unnecessary. There is no burden of responsibility
for computational modelers—or any other contemporary theorists—to
scrutinize their models to identify the parts that are doing accommeodation
and the parts that are doing assimilation. It is hard to see how such efforts
can be productive in view of the inherent ambiguity of the initial constructs.
This point has been noted repeatedly in the literature:

Piaget’s particular models of equilibration represent his efforts to [produce
a theory of self-organization], but they fall somewhat short because of their
excessive abstractness. So the task of producing a concrete theory of cognitive
development as a selforganizing process remains, and that theory may or
may not resemble Piaget's own models very closely. (Chapman, 1992, p. 47)
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FIG. 6.6. Proposed neo-neo-Piagetian paradigm.

Theoretical development could be greatly stimulated if less effort were de-
voted to testing Piaget's theory and more were devoted to testing contem-
porary theories. This is analogous to what is done in other research areas.
For example, memory researchers do not devote most of their efforts to
testing theories by James (1890) or Bartlett (19532) but to contemporary
theories such as those of Craik and Lockhart {1972) or Murdock (1982},
Reference is stili made to earlier works, but as a source of insight and ideas
rather than as explicit theory. (Halford, 1989, p. 351)

This perspective suggests that it is more productive to use the old con-
structs as inspiration rather than as constraints (see Fig. 6.6}. Our only
constraints need then be between our developing theories and our devel-
oping, emerging results. Moreover, I believe that such an approach is
entirely consistent with Inhelder’s advice: “Instead of praising Piaget for
what he accomplished, the best tribute we can pay to his memory is to go
forward” (Inhelder, 1992, p. xiii).
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